Respuesta :

Answer:

[tex]\sum^{n=9}_{n=2} (-3+5n)=196[/tex]

Step-by-step explanation:

Given : Expression the summation from n equals 2 to 9 of negative 3 plus 5 times n.

To find : Solve the expression ?

Solution :

The summation from n equals 2 to 9 of negative 3 plus 5 times n is written as,

[tex]y=\sum^{n=9}_{n=2} (-3+5n)[/tex]

Solve,

[tex]y=(-3+5(2))+(-3+5(3))+(-3+5(4))+(-3+5(5))+(-3+5(6))+(-3+5(7))+(-3+5(8))+(-3+5(9))[/tex]

[tex]y=(-3+5(2))+(-3+5(3))+(-3+5(4))+(-3+5(5))+(-3+5(6))+(-3+5(7))+(-3+5(8))+(-3+5(9))[/tex]

[tex]y=(-3+10)+(-3+15)+(-3+20)+(-3+25)+(-3+30)+(-3+35)+(-3+40)+(-3+45)[/tex]

[tex]y=7+12+17+22+27+32+37+42[/tex]

[tex]y=196[/tex]

Therefore, [tex]\sum^{n=9}_{n=2} (-3+5n)=196[/tex]