if all rectangles with area 4​, which one has the minimum​ perimeter?Let P and w be the perimeter and​ width, respectively, of the rectangle. Write the objective function in terms of P and w. Assume that the width is less than the length if the dimensions are unequal.

Respuesta :

Answer:

1) A rectangle whose width measures 1 and length 4. 2) Objective function: in terms of P and w

[tex]\frac{2w^{2}+16}{w}=P[/tex]

Explanation:

1) Consider that the rectangle dimensions are made up of Integer numbers greater than 0, assuming w < l, and the product of w times l must be equal to 4. A rectangle whose width measures 1 and length 4

Then it comes:

[tex]I)width<length \\II)w*l=4\\A=1*4\\P=w+w+l+l\therefore P=2(w+l)\\P=2(1+4)\\P=2(5)\\P=10\\A=w*l\; \therefore A=1*4\therefore A=4\\Objective \: function:\\2w+4l=P\\[/tex]

[tex]\\Objective \: function: in \,  terms\, of \, P\, and\, w:\\2w+4l=P\\ w*l=4\\l=\frac{4}{w}\: \\2w+4\frac{4}{w}=P\:\\ \: 2w+\frac{16}{w}=P\\\: \: \frac{2w^{2}+16}{w}=P[/tex]