Answer:
change in momentum, [tex]\Delta p=7.65 \,kg.m.s^{-1}[/tex]
Average Force, [tex]F=144.3396\,N[/tex]
Explanation:
Given:
angle of kicking from the horizon, [tex]\theta= 30^{\circ}[/tex]
velocity of the ball after being kicked, [tex]v=18 m.s^{-1}[/tex]
mass of the ball, [tex]m=0.425\, kg[/tex]
time of application of force, [tex]t=5.3\times 10^{-2}\,s[/tex]
We know, since body is starting from the rest
[tex]\Delta p=m.v[/tex].....................(1)
[tex]\Delta p=0.425\times 18[/tex]
[tex]\Delta p=7.65 \,kg.m.s^{-1}[/tex]
Now the components:
[tex]\Delta p_x= 7.65\times cos 30^{\circ}[/tex]
[tex]\Delta p_x= 6.6251 \,kg.m.s^{-1}[/tex]
similarly
[tex]\Delta p_y= 7.65\times sin 30^{\circ}[/tex]
[tex]\Delta p_y= 3.825 \,kg.m.s^{-1}[/tex]
also, impulse
[tex]I=F\times t[/tex].........................(2)
where F is the force applied for t time.
Then from eq. (1) & (2)
[tex]F\times t=m.v[/tex]
[tex]F\times 5.3\times 10^{-2}= 7.65[/tex]
[tex]F=144.3396\,N[/tex]
Now, the components
[tex]F_x=144.3396\times cos 30^{\circ}[/tex]
[tex]F_x=125.0018\,N[/tex]
&
[tex]F_y=144.3396\times sin 30^{\circ}[/tex]
[tex]F_y=72.1698\,N[/tex]