Assume that a demand equation is given by q equals 8000 minus 100 p. Find the marginal revenue for the given production levels​ (values of​ q). (Hint: Solve the demand equation for p and use Upper R (q )equals qp​.)

Respuesta :

Answer with Step-by-step explanation:

We are given that a demand equation is given by

[tex]q=8000-100p[/tex]

We have to find the maximum marginal revenue for the given production levels.

[tex]R(q)=qp[/tex]

[tex]100p=8000-q[/tex]

[tex]p=80-\frac{q}{100}[/tex]

Substitute the value then we get

[tex]R(q)=q(80-\frac{q}{100})[/tex]

[tex]R(q)=80q-\frac{q^2}{100}[/tex]

Differentiate w.r.t q

Then, we get

Marginal revenue,[tex]R'(q)=80-\frac{q}{50}[/tex]

[tex]R'(q)=0[/tex]

[tex]80-\frac{q}{50}=0[/tex]

[tex]\frac{q}{50}=80[/tex]

[tex]q=4000[/tex]

Again differentiate

[tex]R''(q)=-\frac{1}{50} <0[/tex]

Hence , the marginal revenue is maximum at q=4000

Now, the maximum marginal revenue is given by

[tex]R'(4000)=80-\frac{4000}{50}=0[/tex]