A pulley with a radius of 3.0 cm and a rotational inertia of 4.5 x 10–3 kg·m2 is suspended from the ceiling. A rope passes over it with a 2.0-kg block attached to one end and a 4.0-kg block attached to the other. The rope does not slip on the pulley. When the velocity of the heavier block is 2.0 m/s the total kinetic energy of the pulley and blocks is:(A) 2.0 J(B) 4.0 J(C) 14 J(D) 22 J(E) 28 J

Respuesta :

Answer:

(D) 22 J

Explanation:

Given:

radius of the pulley, [tex]r=3\,cm[/tex]

rotational inertia of the pulley, [tex]I=4.5\times 10^{-3}\,kg.m^{-2}[/tex]

mass on one side of the rope, [tex]m_1=2\,kg[/tex]

mass on the other side of the rope, [tex]m_2=4\,kg[/tex]

velocity of the mass [tex]m_2[/tex], [tex]v=2\,m.s^{-1}[/tex]

Angular velocity of the pulley:

[tex]\omega= \frac{v}{r}[/tex]

[tex]\omega=\frac{2}{3\times 10^{-2}}\,rad.s^{-1}[/tex]

We know for a rotating body,

[tex]KE=\frac{1}{2} I.\omega^2[/tex]

putting the respective values

[tex]KE_p=\frac{1}{2} \times 4.5\times 10^{-3}\times (\frac{200}{3})^2[/tex]

[tex]KE_p= 10\,J[/tex]

Now, the kinetic energy of the blocks :

[tex]KE_b=\frac{1}{2} (m_1+m_2).v^2[/tex]

[tex]KE_b=\frac{1}{2}\times (2+4)\times 2^2[/tex]

[tex]KE_b=12\,J[/tex]

∴Total kinetic energy

[tex]KE=KE_p+KE_b[/tex]

[tex]KE=10+12[/tex]

[tex]KE=22\,J[/tex]