Answer:
7.8655
Step-by-step explanation:
Given the functionl
[tex]U=Ax^3+Bx^2-cx+D[/tex]
Where,
[tex]A=1.45J/m^3\\B=2.85J/m^2\\c= 1.7J/m\\D=0.6J[/tex]
We have, replacing,
[tex]U=1.45x^3+2.85x^2-1.7x+0.6[/tex]
We need to derivate and verify for stable equilibrum that,
[tex]\frac{d^2 U}{dx^2}>0[/tex]
Then,
[tex]U'(x) = 4.32x^2+5.7x-1.7[/tex]
Roots in,
[tex]x_1=-1.57008\\x_2=0.250636[/tex]
We obtain U"(x), then we have
[tex]\frac{d^2U}{dx}=8.64x+5.7[/tex]
For [tex]x=-1.57, U"(x)=-7.86549<0[/tex] Unestable
For [tex]x=0.250636 U"(x)=7.8655>0[/tex] Stable