2. A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume of the box

Respuesta :

Answer:

[tex]2 ft^3[/tex]

Step-by-step explanation:

We are given that

Side of square shaped piece= 3ft

Let  square of side x cut from each corner of square piece cardboard.

Length of box=[tex]3-2x[/tex]

Breadth of box=[tex]3-2x[/tex]

Height of box= x

We have to find the largest volume of box.

Volume of box is given by

[tex]V=x(3-2x)^2[/tex]

[tex]V=(4x^3-12x^2+9x)[/tex]

Differentiate w.r.t x

[tex]\frac{dV}{dx}=12x^2-24x+9[/tex]

Substitute [tex]\frac{dV}{dx}=0[/tex]

[tex]12x^2-24x+9=0[/tex]

[tex]4x^2-8x+3=0[/tex]

[tex](2x-1)(2x-3)=0[/tex]

[tex]2x-1=0\implies x=\frac{1}{2}[/tex]

[tex]2x-3=0\implies x=\frac{3}{2}[/tex]

[tex]x=\frac{1}{2}, x=\frac{3}{2}[/tex]

Again differentiate w.r.t x

[tex]\frac{d^2V}{dx^2}=24x-24[/tex]

Substitute [tex]x=\frac{1}{2}[/tex]

[tex]\frac{d^2V}{dx^2}=12-24=-12<0[/tex]

Substitute [tex]x=\frac{3}{2}[/tex]

[tex]\frac{d^2V}{dx^2}=36-24=12>0[/tex]

Therefore, [tex]\frac{d^2V}{dx^2} <0[/tex] at [tex]x=\frac{1}{2}[/tex]

Hence, the volume is maximum at [tex]x=\frac{1}{2}[/tex]

Substitute the value [tex]x=\frac{1}{2}[/tex] then we get

[tex]V=\frac{1}{2}(3-1)^2=2 ft^3[/tex]