Answer:
vf1=2.03 m/s
vf2=0.026 m/s
Explanation:
[tex]m_{p1}=68 kg[/tex]
[tex]m_{s}=0.045 kg[/tex]
[tex]m_{p2}=56 kg[/tex]
[tex]v_{s1}=31.5\frac{m}{s}[/tex]
[tex]v_{p1}=2.05\frac{m}{s}[/tex]
[tex]v_{p2}=0\frac{m}{s}[/tex]
Collision elastic in the moment thrown the snowball
[tex](m_{p1}+m_{s})*v_{p1}=m_{p1}*v_{f1}+m_{s1}*v_{s1}[/tex]
[tex]v_{f1}=\frac{(68kg+0.045kg)*2.05\frac{m}{s}-0.045kg*31.5\frac{m}{s}}{68kg}[/tex]
[tex]v_{f1}=2.03\frac{m}{s}[/tex]
[tex]m_{s1}*v_{s1}+m_{p2}*v_{2}=(m_{s}+m_{2})*v_{f2}[/tex]
[tex]v_{f2}=\frac{0.045kg*31.5\frac{m}{s}}{56kg+0.045kg}[/tex]
[tex]v_{f1}=0.0262\frac{m}{s}[/tex]