Answer:
187ppm.
Explanation:
To develop the problem we first need to perform mass conversions to moles. In this way for gases your conversion is given by,
[tex]Mol_{gas} = \frac{m_{gas}}{M_{W}}[/tex]
[tex]Mol_{gas} = \frac{16000g}{30}[/tex]
[tex]Mol_{gas} = 533.3mol[/tex]
For the VOC's same:
[tex]m_{voc} = 0.01*1000=10g[/tex]
then,
[tex]Mol_{voc} = \frac{m_{voc}}{M_{W}}[/tex]
[tex]Mol_{voc} = \frac{10}{100}[/tex]
[tex]Mol_{voc} = 0.1mol[/tex]
We only need to obtain the fraction of Voc's in exhaust. This will be in particles per million, so
[tex]\xi = \fra{Mol_{voc}}{(Mol_{gas}+Mol_{voc})}[/tex]
[tex]\xi = \frac{0.1}{0.1+533.3}*10^6[/tex]
[tex]\xi = 187ppm.[/tex]