Answer:
[tex]I_{total}=220.64 kg*m^{2}[/tex]
Explanation:
The moment of inertia of the system is equal to the each population and the platform inertia so
Inertia disk
[tex]I_{disk}=\frac{1}{2}*m_{disk}*(r_{p})^{2}[/tex]
Inertia person
[tex]I_{p}=\frac{1}{2}*m_{p}*(r_{p})^{2}[/tex]
Inertia dog
[tex]I_{d}=\frac{1}{2}*m_{d}*(r_{d})^{2}[/tex]
The Inertia of the system is the sum of each mass taking into account that all exert the force of inertia:
[tex]I_{total}=I_{disk}+I_{p}+I_{d}[/tex]
[tex]I_{total}=\frac{1}{2}*103kg*(1.71)^{2}+\frac{1}{2}*68.9kg*(1.09)^{2}+\frac{1}{2}*27.7kg*(1.45)^{2}[/tex]
[tex]I_{total}=220.64 kg*m^{2}[/tex]