Triangle X Y Z is shown. Angle X Z Y is a right angle. Angle Z X Y is 60 degrees and angle X Y Z is 30 degrees. The length of hypotenuse X Y is 4. Given right triangle XYZ, what is the value of tan(Y)? One-half StartFraction StartRoot 3 EndRoot Over 3 EndFraction StartFraction StartRoot 3 EndRoot Over 2 EndFraction StartFraction 2 StartRoot 3 EndRoot Over 3 EndFraction

Respuesta :

Answer:

StartFraction StartRoot 3 EndRoot Over 3 EndFraction

Step-by-step explanation:

see the attached figure to better understand the problem

step 1

we know that

In the right triangle XYZ

[tex]cos(Y)=\frac{ZY}{XY}[/tex] ---> adjacent side divided by the hypotenuse

substitute the values

[tex]cos(30\°)=\frac{ZY}{4}[/tex]

Remember that

[tex]cos(30\°)=\frac{\sqrt{3}}{2}[/tex]

so

substitute

[tex]\frac{\sqrt{3}}{2}=\frac{ZY}{4}[/tex]

[tex]ZY=(4)\frac{\sqrt{3}}{2}[/tex]

[tex]ZY=2\sqrt{3}\ units[/tex]

step 2

[tex]sin(Y)=\frac{XZ}{XY}[/tex] --> opposite side divided by the hypotenuse

substitute the values

[tex]sin(30\°)=\frac{XZ}{4}[/tex]

Remember that

[tex]sin(30\°)=\frac{1}{2}[/tex]

so

[tex]\frac{1}{2}=\frac{XZ}{4}[/tex]

[tex]XZ=2\ units[/tex]

step 3

[tex]tan(Y)=\frac{XZ}{ZY}[/tex] --> opposite side divided by adjacent side

substitute the values

[tex]tan(Y)=\frac{2}{2\sqrt{3}}[/tex]

[tex]tan(Y)=\frac{1}{\sqrt{3}}[/tex]

Simplify

[tex]tan(Y)=\frac{\sqrt{3}}{3}[/tex]

so

StartFraction StartRoot 3 EndRoot Over 3 EndFraction

Ver imagen calculista

Answer:

b on edg

Step-by-step explanation: