Answer:
1) [tex](2.37\times10^{-4})(4.1\times 10^7)=9717[/tex]
2) [tex](3.5\times10^{-6})(2.41\times 10^{12})=8435[/tex]
Step-by-step explanation:
1) Given : Expression [tex](2.37\times10^{-4})(4.1\times 10^7)[/tex]
To find : Multiply the expression ?
Solution :
Step 1 - Write the expression,
[tex](2.37\times10^{-4})(4.1\times 10^7)[/tex]
Step 2 - Group the numerical factors together,
[tex]=(2.37\times 4.1)(10^{-4}\times 10^7)[/tex]
Step 3 - Using exponent rule, [tex]10^a+10^b=10^{a+b}[/tex]
[tex]=9.717\times 10^{-4+7}[/tex]
[tex]=9.717\times 10^{3}[/tex]
Step 4 - Remove decimal,
[tex]=\frac{9717}{1000}\times 1000[/tex]
[tex]=9717[/tex]
Therefore, [tex](2.37\times10^{-4})(4.1\times 10^7)=9717[/tex]
2) Given : Expression [tex](3.5\times10^{-6})(2.41\times 10^{12})[/tex]
To find : Multiply the expression ?
Solution :
Step 1 - Write the expression,
[tex](3.5\times10^{-6})(2.41\times 10^{12})[/tex]
Step 2 - Group the numerical factors together,
[tex](3.5\times 2.41)(10^{-6}\times 10^{12})[/tex]
Step 3 - Using exponent rule, [tex]10^a+10^b=10^{a+b}[/tex]
[tex]=8.435\times 10^{-6+12}[/tex]
[tex]=8.435\times 10^{6}[/tex]
Step 4 - Remove decimal,
[tex]=\frac{8435}{1000}\times 1000[/tex]
[tex]=8435[/tex]
Therefore, [tex](3.5\times10^{-6})(2.41\times 10^{12})=8435[/tex]