Answer:
15.19°, 31.61°, 51.84°
Explanation:
We need to fin the angle for m=1,2,3
We know that the expression for wavelenght is,
[tex]\lambda = \frac{c}{f}[/tex]
Substituting,
[tex]\lambda = \frac{344}{1250}[/tex]
[tex]\lambda = 0.2752m[/tex]
Once we have the wavelenght we can find the angle by the equation of the single slit difraction,
[tex]sin\theta = \frac{m \lambda}{W}[/tex]
Where,
W is the width
m is the integer
[tex]\lambda[/tex] the wavelenght
Re-arrange the expression,
[tex]\theta = sin^{-1} \frac{m\lambda}{W}[/tex]
For m=1,
[tex]\theta = sin^{-1} \frac{1 (0.2752)}{1.05}= 15.19\°[/tex]
For m=2,
[tex]\theta = sin^{-1} \frac{2 (0.2752)}{1.05}= 31.61\°[/tex]
For m=3,
[tex]\theta = sin^{-1} \frac{3 (0.2752)}{1.05}= 51.84\°[/tex]
The angle of diffraction is directly proportional to the size of the wavelength.