A blimp can be seen flying at an altitude of 5500 feet above a motor speedway during a race. The slanted distance directly to the pagoda at the startdashfinish line is d feet. Express the horizontal distance h as a function of d.

Respuesta :

Answer:

The expression of h as function of x is   h = [tex]\sqrt{(d + 5500) (d - 5500)}[/tex]

Step-by-step explanation:

Given as :

The distance of blimp  (AB) = 5500 feet

The slanted distance to the pagoda (BC) = d feet

The horizontal distance (AC) = h

Let the angle made between slanted distance and horizontal distance be Ф

So , cos Ф = [tex]\frac{AC}{BC}[/tex] = [tex]\frac{h}{d}[/tex]

And sin Ф =  [tex]\frac{AB}{BC}[/tex] = [tex]\frac{5500}{d}[/tex]

∵, cos²Ф = 1 - sin²Ф

So, [tex](\frac{h}{d})^{2}[/tex] = [tex]1 - (\frac{5500}{d})^{2}[/tex]

Or, [tex](\frac{h}{d})^{2}[/tex] = [tex](\frac{d^{2}- 5500^{2}}{d^{2}})[/tex]

Or,                                     h² = d² - 5500²

∴                                        h = [tex]\sqrt{d^{2}- 5500^{2}}[/tex]

Or,                                     h = [tex]\sqrt{(d + 5500) (d - 5500)}[/tex]

Hence The expression of h as function of x is   h = [tex]\sqrt{(d + 5500) (d - 5500)}[/tex]     Answer