Pumps A, B, and C operate at their respective constant rates. Pumps A and B, operating simultaneously, can fill a certain tank in 6/5 hours; pumps A and C, operating simultaneously, can fill the tank in 3/2 hours; and pumps B and C, operating simultaneously, can fill the tank in 2 hours. How many hours does it take pumps A, B, and C, operating simultaneously, to fill the tank.

A. 1/3
B. 1/2
C. 1/4
D. 1
E. 5/6

Respuesta :

Answer:D) 1 hr

Step-by-step explanation:

Given

Pump A and B can fill tank in [tex]\frac{6}{5} hr[/tex]

Pump A and C can fill tank in [tex]\frac{3}{2} hr[/tex]

Pump B and C can fill tank in [tex]2 hr[/tex]

Let A be the total hr taken A therefore rate of [tex]A=\frac{1}{A} /hr[/tex]

Let B be the total hr taken B therefore rate of [tex]B=\frac{1}{B} /hr[/tex]

Let C be the total hr taken C therefore rate of [tex]C=\frac{1}{C} /hr[/tex]

[tex]\frac{1}{A}+\frac{1}{B}=\frac{5}{6}[/tex]-----1

[tex]\frac{1}{B}+\frac{1}{C}=\frac{1}{2}[/tex]-----2

[tex]\frac{1}{A}+\frac{1}{C}=\frac{2}{3}[/tex]-----3

Adding 1,2 & 3

[tex]2(\frac{1}{A}+\frac{1}{B}+\frac{1}{C})=\frac{5}{6}+\frac{1}{2}+\frac{2}{3}[/tex]

[tex]\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{2}{2}[/tex]

[tex]\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=1[/tex]

thus time taken by A,B and C combined is 1 hr