Respuesta :
Answer:
Step-by-step explanation:
The vertex form of a parabola is given by y = a(x - h)^2 + k, where (h, k) is the vertex.
Given vertex at (2,-3), h = 2, k = -3
y = a(x - 2)^2 + (-3) = a(x - 2)^2 - 3
The parabola passes through (0,5) so
5 = a(0 - 2)^2 - 3
5 = 4a - 3
4a = 8
a = 2
The parabola equation in vertex form:
y = 2(x - 2)^2 - 3
Vertex form of parabola
- y=a(x-h)^2+k
So
here
- (h,k)=(2,-3)
Equation of parabola
- y=a(x-2)^2-3
Now
- Passes through (0,5)
[tex]\\ \rm\rightarrowtail 5=a(-2)^2-3[/tex]
[tex]\\ \rm\rightarrowtail 4a-3=5[/tex]
[tex]\\ \rm\rightarrowtail 4a=8[/tex]
[tex]\\ \rm\rightarrowtail a=2[/tex]
So
equation is
- y=2(x-2)^2-3