The volume of the gas when the pressure is [tex]1.6 \mathrm{L} / \mathrm{cm}^{2}[/tex] is 200 [tex]cm^3[/tex]
Solution:
Given, the volume of a gas in cubic centimeters, V, varies inversely with the pressure of the gas in liters per square centimeter, p.
[tex]\text { Then, } V \alpha \frac{1}{p}[/tex]
[tex]\rightarrow \mathrm{V}=\frac{c}{p}[/tex]
where "c" is proportionality constant.
Given that when the volume of the gas is 16 [tex]cm^3[/tex] , its pressure is 20 [tex]L/cm^2[/tex]
So, substitute the above values in our formula
[tex]\begin{array}{l}{\rightarrow 16=\frac{c}{20}} \\\\ {\rightarrow c=16 \times 20 \rightarrow \mathrm{c}=320}\end{array}[/tex]
Now let us find the volume of the gas when the pressure is [tex]1.6 \mathrm{L} / \mathrm{cm}^{2}[/tex]
[tex]\text { Then, } \mathrm{v}=\frac{320}{1.6}=200[/tex]
Hence, the volume of the gas is 200 [tex]cm^3[/tex]