contestada


The base of pyramid A is a rectangle with a length of 10 meters and a width of 20 meters. The base of pyramid B is a square with 10-meter sides.
The heights of the pyramids are the same.
The volume of pyramid A is
the volume of pyramid B. If the height of pyramid B Increases to twice that of pyramid A, the
new volume of pyramid Bis
the volume of pyramid A

Respuesta :

Answer:

Volume of pyramid A is twice the volume of pyramid B.

If the height of pyramid B increases to twice that of pyramid A, it's volume will be equal to the volume of pyramid A.

Step-by-step explanation:

Let, the initial height of each pyramids be h metre

Base area of pyramid A =[tex]10 \times 20[/tex] sq. metre

                                         = 200 sq. metre

Base area of pyramid B =[tex](10^{2})[/tex] sq. metre

                                         = 100 sq. metre

we know that volume of a pyramid

= [tex]\frac{base area \times  height}{3}[/tex] -------------(1)

So, from (1)

volume of pyramid A = [tex]\frac{200 \times h}{3}[/tex] cubic metre -----(2)

volume of pyramid B = [tex]\frac{100 \times h}{3}[/tex] cubic metre -----(3)

So,

volume of pyramid A is twice the volume of pyramid B.

If the height of pyramid B increases to twice that of pyramid A, it's volume will be equal to the volume of pyramid A.