The radius of a circular puddle is growing at a rate of 25 cm/s.

(a) How fast is its area growing at the instant when the radius is 50 cm? HINT [See Example 1.] (Round your answer to the nearest integer.)


(b) How fast is the area growing at the instant when it equals 36 cm2? HINT [Use the area formula to determine the radius at that instant.] (Round your answer to the nearest integer.)

Respuesta :

Answer:

a) 2500π cm/s

b) 300√π cm/s

Step-by-step explanation:

Given:

Rate of growth of radius, [tex]\frac{dr}{dt}[/tex] = 25 cm/s

Area of circle is given as:

A = πr²

a)Rate of growth of area, [tex]\frac{dA}{dt}=\frac{d(\pi r^2)}{dt}[/tex]

or

⇒ [tex]\frac{dA}{dt}=(2)\pi r\frac{dr}{dt}[/tex] ............(1)

at r = 50 cm

on substituting the respective values, we get

⇒ [tex]\frac{dA}{dt}=(2)\pi r\frac{dr}{dt}[/tex]

or

⇒ [tex]\frac{dA}{dt}[/tex] = 2π(50)25 = 2500π cm/s

b) when area , A = 36 cm²

36 = πr²

r = [tex]\frac{6}{\sqrt{\pi}}[/tex]

thus, using (1)

⇒ [tex]\frac{dA}{dt}=(2)\pi r\frac{dr}{dt}[/tex]

on substituting the respective values, we get

⇒ [tex]\frac{dA}{dt}=(2)\pi (\frac{6}{\sqrt{\pi}})25[/tex]

or

⇒ [tex]\frac{dA}{dt}[/tex] = 300√π cm/s