Respuesta :
Answer:
5.88×10⁸ W
Explanation:
Power = change in energy / time
P = mgh / t
P = (m/t) gh
P = (1.2×10⁶ kg/s) (9.8 m/s²) (50.0 m)
P = 5.88×10⁸ W
The power generated is about [tex]588 \times 10^{8}[/tex]Watt when the waterfall from the waterfall and reaches the bottom.
Explanation:
As per given question, the rate of water is [tex]1.2 \times 10^{6} \mathrm{kg} / \mathrm{s}[/tex]
From height (h) of 50m and acceleration due to gravity is 9.8 [tex]\mathrm{m} / \mathrm{s}^{2}[/tex]
we know that Potential Energy, [tex]\mathrm{PE}=\mathrm{m} \times \mathrm{g} \times \mathrm{h}[/tex]
The potential energy of [tex]1.2 \times 10^{6} \mathrm{kg}[/tex] (m) water for one second is written as
[tex]\mathrm{PE}=\mathrm{m} \times \mathrm{g} \times \mathrm{h}[/tex]
[tex]\mathrm{PE}=\left(1.2 \times 10^{6}\right) \times 9.8 \times 50[/tex]
[tex]\mathrm{PE}=588 \times 10^{6} \text { Joule }[/tex]
But power output of 1 Watt = 1 Joule / second. So the power generated in the waterfall is [tex]588 \times 10^{6} \mathrm{Watt}[/tex] or we can also write as 588 Mega Watts.