Answer:
a) v=3.166 m/s
b) μ=0.0169
Explanation:
a)
The motion is totally inelastic collision so the mass of the person and the mass of the sled in the second part of the motion are add both.
[tex]m_{p}*v_{p}+m_{s}*v_{s}=(m_{p}+m_{s})*v_{f}\\60kg*3.8\frac{m}{s}+12kg*0\frac{m}{s}=(60kg+12kg)*v_{f}[/tex]
[tex]228 \frac{kg*m}{s}=72kg*v_{f}\\ v_{f}=\frac{228\frac{kg*m}{s}}{72kg}[/tex]
[tex]v_{f}=3.166\frac{m}{s}[/tex]
b)
The motion have friction so the force and coefficient can be find using Newtons second law where
[tex]f_{k}=u*m*a*x[/tex]
[tex]K=\frac{1}{2}*m*(v)^{2}\\[/tex]
[tex]-u*m*g*x=\frac{1}{2}*m*(v*cos(180))^{2}\\-u=-\frac{v^{2}}{2*g*x}\\u= \frac{3.16^{2}}{2*9.8*30}\\u=0.0169[/tex]