Answer:
5.69755 rad/s²
Explanation:
r = Radius = 1.3 m
v = Velocity of the hammer = 22 m/s
n = Number of revolutions = 4
Angular displacement
[tex]\theta=n\times 2\pi\\\Rightarrow \theta=4\times 2\pi\\\Rightarrow \theta=8\pi[/tex]
[tex]\omega_i[/tex] = Initial angular speed = 0
Final angular speed
[tex]\omega_f=\frac{v}{r}\\\Rightarrow \omega_f=\frac{22}{1.3}\\\Rightarrow \omega_f=16.92307\ rad/s[/tex]
Angular acceleration
[tex]\alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}\\\Rightarrow \alpha=\frac{16.92307^2-0^2}{2\times 8\pi}\\\Rightarrow \alpha=5.69755\ rad/s^2[/tex]
Angular acceleration is given by 5.69755 rad/s²