To solve the problem we resort to the mechanics equations, our values are,
[tex]\nu=3.31rps[/tex]
[tex]r_1 = 1.14m[/tex]
By definition we know that the angular velocity is given by
[tex]\omega= 2\pi \nu[/tex]
[tex]\omega = 2\pi( 3.31)[/tex]
[tex]\omega = 20.8rad/s[/tex]
The relation of the tangential velocity with the angular velocity is given by the radius, thus
[tex]\omega = \frac{V}{r}[/tex]
[tex]V=\omega r[/tex]
[tex]V=20.8*1.14[/tex]
[tex]V=23.712m/s[/tex]
Part B)
In the case of an ideal speed at a certain angle, we have the values,
[tex]\theta = 42.4\°[/tex]
[tex]x=32.6m[/tex]
[tex]r_2 = 1m[/tex]
By definition we have to
[tex]x= \frac{V^2 sin\theta}{g}[/tex]
[tex]V= \sqrt{(\frac{g}{sin2\theta})}[/tex]
[tex]V=\frac{32.6*9.8}{sin(2*42.4)}[/tex]
[tex]V=17.81m/s[/tex]
The angular rate must be
[tex]\omega_2 = \frac{V}{r_2} = \frac{17.91}{1} = 17.91rad/s[/tex]