The value of a is [tex]\frac{-9}{4}[/tex]
Step-by-step explanation:
1. Determine the other solution of x
If one value is 5 + [tex]\frac{3}{2}[/tex] then the other value is 5 - [tex]\frac{3}{2}[/tex]
2. Use reverse technique to find the equation
(5 + [tex]\frac{3}{2}[/tex]) (5 - [tex]\frac{3}{2}[/tex]) = 0
25 - [tex]\frac{-15}{2}[/tex] + [tex]\frac{15}{2}[/tex] - [tex]\frac{9x^{2} }{4}[/tex] = 0
- [tex]\frac{9x^{2} }{4}[/tex] + 25 = 0
3. The equation is - [tex]\frac{9x^{2} }{4}[/tex] + 25 = 0
4. Find the value of a
a is the number with the variable [tex]x^{2}[/tex] therefore it is - [tex]\frac{9}{4}[/tex]
Keyword: quadratic equation, solution
Learn more about quadratic equation at
#LearnwithBrainly