Answer:
Given that
β= 120 dB at 5 m
We know that sound intensity given as
[tex]\beta =10dB\log\dfrac{I}{I_o}[/tex]
[tex]120 =10\log\dfrac{I}{10^{-12}}[/tex]
I= 1 W/m²
Power producing by loud speaker
P = I x 4πr²
[tex]P=1\times 4\pi \times 5^2\ W[/tex]
P=314.15 W
a)
Let take intensity at 35 m is I'
r'=35 m
I'=P/4πr'²
[tex]I'=\dfrac{314.15}{4\pi \times 35^2}\ W/m^2[/tex]
I'=0.0204 W/m²
b)
Given that
β'= 80 dB
[tex]\beta' =10dB\log\dfrac{I'}{I_o}[/tex]
[tex]80=10\log\dfrac{I'}{10^{-12}}[/tex]
I'=10⁻⁴ W/m²
Let's take at distance r intensity is 80 dB
P=314.15 W
P = I' x 4πr'²
314.15 = 10⁻⁴ x 4πr'²
r'=500.11 m