How many cubes with side lengths of 1/3 cm does it take to fill the prism?

Length 1 cm, Width 2 2/3, Height 2/3

Respuesta :

Answer:

The number of cubes that fill the prism is 24

Step-by-step explanation:

Given as :

The length of cube (l) = [tex]\frac{1}{3}[/tex] cm

The length of prism (L) = 1 cm

The width of prism (w) = 2 [tex]\frac{2}{3}[/tex] = [tex]\frac{8}{3}[/tex] cm

The height of prism (h) = [tex]\frac{2}{3}[/tex] cm

Let the number of cubes that fill the prism = x

Now, Volume of cube with length (l) = l³   cm³

Or,  Volume of cube with length (l) = [tex](\frac{1}{3})^{3}[/tex]  cm³

Or,  Volume of cube with length (l) = [tex](\frac{1}{27})[/tex]  cm³

Again , Volume of prism  = [tex]\frac{1}{2}\times Length \times width \times height[/tex]

Or, Volume of prism = [tex]\frac{1}{2}\times 1 \times \frac{8}{3} \times \frac{2}{3}[/tex]

Or, Volume of prism = [tex](\frac{8}{9})[/tex]  cm³

So , The number of cubes to fill prism  

 The number of cubes × Volume of cube = Volume of prism

Or, x × [tex](\frac{1}{27})[/tex]  cm³ = [tex](\frac{8}{9})[/tex]  cm³

or   x = [tex]\frac{8\times 27}{9}[/tex] = 24

Hence The number of cubes which fill the prism is 24  Answer