Answer:
0.57183 m/s
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
a = Acceleration
u = Initial velocity
v = Final velocity
s = Displacement
Mass of person
[tex]m=\frac{W}{g}\\\Rightarrow m=\frac{660}{9.81}\\\Rightarrow m=67.27828\ kg[/tex]
As the forces are conserved
[tex]\text{Upward forces - Downward forces}=ma\\\Rightarrow \text{Force of both arms - Force of gravity}=ma\\\Rightarrow 355+355-660=67.27828a\\\Rightarrow 50=67.27828a\\\Rightarrow a=\frac{50}{67.27828}\\\Rightarrow a=0.74318\ m/s^2[/tex]
From equation of motion
[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 0.74318\times 0.22+0^2}\\\Rightarrow v=0.57183\ m/s[/tex]
The person's velocity at the point is 0.57183 m/s