[tex]f(x,y)=x^4+y^4+32x-4y+5[/tex]
has critical points where the partial derivatives vanish:
[tex]f_x=4x^3+32=0\implies x=-2[/tex]
[tex]f_y=4y^3-4=0\implies y=1[/tex]
[tex]f[/tex] has Hessian matrix
[tex]H(x,y)=\begin{bmatrix}12x^2&0\\0&12y^2\end{bmatrix}[/tex]
At the critical point, the Hessian determinant is
[tex]\det H(-2,1)=\begin{vmatrix}48&0\\0&12\end{vmatrix}=576>0[/tex]
and [tex]f_{xx}(-2,1)=48>0[/tex], which tells us (-2, 1) is a local minimum with a value of [tex]f(-2,1)=-46[/tex].