Answer:
[tex]y=2000(1.1)^x[/tex]
[tex]y=2000(0.9)^x[/tex]
Step-by-step explanation:
Here, x represents the number of days,
y represents the attendance after x days,
Note : If a value is changing by a percent per period,
Then the final value after t period,
[tex]A=P(1+r)^t[/tex]
Where,
P = Initial value,
r = change rate per period,
Given,
For June,
Original attendance = 2,000,
Percentage change per day = 10%,
So, the attendance after x days,
[tex]y=2000(1+\frac{10}{100})^x=2000(1+0.1)^x=2000(1.1)^x[/tex]
For August,
Original attendance = 2,000,
Percentage change per day = -10%, ( negative sign shows the decrements ),
So, the attendance after x days,
[tex]y=2000(1-\frac{10}{100})^x=2000(1-0.1)^x=2000(0.9)^x[/tex]