Answer:
v=2.13 m/s
Explanation:
Given that
L= 3 ft
We know that
1 ft = 0.3048 m
L=0.91 m
a= g/2
F= m a
F= m g/2 = K L
k= (mg)/(2L)
Now from energy conservation
Kinetic energy of train = potential energy of the spring
[tex]\dfrac{1}{2}mv^2=\dfrac{1}{2}kL^2[/tex]
k= (mg)/(2L)
[tex]\dfrac{1}{2}mv^2=\dfrac{1}{2}\times \dfrac{mg}{2L}L^2[/tex]
[tex]v^2=\dfrac{g}{2}L[/tex]
[tex]v=\sqrt{\dfrac{g}{2}L}[/tex]
By putting the values
[tex]v=\sqrt{\dfrac{g}{2}L}[/tex]
[tex]v=\sqrt{\dfrac{10\times 0.91}{2}}[/tex] ( take g =10 m/s²)
v=2.13 m/s