An experiment is done to compare the initial speed of projectiles fired from high-performance catapults. The catapults are placed very close to a pendulum bob of mass 10.0 kg attached to a massless rod of length L. Assume that catapult 1 fires a projectile of mass 5.50 g at speed v1 and catapult 2 fires a projectile of mass 10.0 g at speed v2. If the projectile from catapult 1 causes the pendulum to swing to a maximum angular displacement of 6.80 ∘ and the projectile from catapult 2 causes a displacement of 11.4 ∘, find the ratio of the initial speeds, v1v2 .

Respuesta :

Answer:1.084

Explanation:

Given

mass of Pendulum M=10 kg

mass of bullet m=5.5 gm

velocity of bullet u

After collision let say velocity is v

conserving momentum we get

[tex]mu=(M+m)v[/tex]

[tex]v=\frac{m}{M+m}\times u[/tex]

Conserving Energy for Pendulum

Kinetic Energy=Potential Energy

[tex]\frac{(M+m)v^2}{2}=(M+m)gh[/tex]

here [tex]h=L(1-\cos \theta )[/tex] from diagram

therefore

[tex]v=\sqrt{2gL(1-\cos \theta )}[/tex]

initial velocity in terms of v

[tex]u=\frac{M+m}{m}\times \sqrt{2gL(1-\cos \theta )}[/tex]

For first case [tex]\theta =6.8^{\circ} [/tex]

[tex]u_1=\frac{M+m_1}{m_1}\times \sqrt{2gL(1-\cos 6.8)}[/tex]

for second case [tex]\theta =11.4^{\circ}[/tex]

[tex]u_2=\frac{M+m_2}{m_2}\times \sqrt{2gL(1-\cos 11.4)}[/tex]

Therefore [tex]\frac{u_1}{u_2}=\frac{\frac{M+m_1}{m_1}\times \sqrt{2gL(1-\cos 6.8)}}{\frac{M+m_2}{m_2}\times \sqrt{2gL(1-\cos 11.4)}}[/tex]

[tex]\frac{u_1}{u_2}=\frac{1819.181\times 0.0838}{1001\times 0.1404}[/tex]

[tex]\frac{u_1}{u_2}=1.084[/tex]

i.e.[tex]\frac{v_1}{v_2}=1.084[/tex]

Ver imagen nuuk

The conservation of momentum and energy allows finding the result for the relationship of the velocities of the balls fired by the two catapults is:

          [tex]\frac{v_1}{v_2} = 1.0 85[/tex]  

Given parameters

  • The mass of the pendulum M = 10 kg.
  • The mass of each ball m₁ = 5.50 g = 5.50 10⁻³ kg and m₂ = 10.0 g.  
  • pendulum angle te1 = 6.80º and tea2 = 11.4º

To find

  • The ratio of ball speeds v1 / v2

The momentum is defined by the product of the massby the speed of the particle, without the system is isolated the momentum is conserved.

      P = mv

Where bold letters indicate vectors, p is momentum, m is mass, and v is velocity.

Let's solve the problem for each ball separately, let's start with case 1 the ball of m₁ = 5.50 10⁻³ kg.

The system is shaped by the ball and the pendulum, therefore it is an isolated system and the momentum is conserved.

Initial instant. Before crash

      p₀ = m₁ v₁

Final moment. Right after the crash

      [tex]p_f[/tex] = (m₁ + M) v

The momentum is preserved

      p₀ = [tex]p_f[/tex]

      m₁ v₁ = (m₁ + M) v

      v₁ = [tex]\frac{m_1 + M}{m_1} \ v[/tex]           (1)

Now we can use the conservation of energy for the pendulum with the embedded ball m1, see attached.  

Starting point. Just when they're coming out at the bottom

        Em₀ = K = ½ (m₁ + M) v²

Final point. The highest part of the movement

        [tex]Em_f[/tex]= U = (m₁ + M) gh

Energy is conserved.

       Em₀ = [tex]Em_f[/tex]

       ½ (m₁ + M) v² = (m₁ + M) gh

       v = [tex]\sqrt{2gh}[/tex]

Let's use trigonometry to find the height of the pendulum, see attached

       h = L - L cos θ₁

Let's substitute

      v = [tex]\sqrt{2gL ( 1 - cos \theta_1)}[/tex]  

Let's substitute in equation 1

      [tex]v_1 = \frac{m_1+M}{m_1} \ \sqrt{2g L ( 1- cos \theta_1) }[/tex]

We solve the case 2 ball of mass m₂ = 10 10⁻³ kg.

The system has the same approach: the conservation of the moment and then the conservation of energy, therefore the expression for the speed of this ball is:

             [tex]v_2 = \frac{m_2+M}{m_2} \ \sqrt{2gL(1-cos \theta_2) }[/tex]  

They ask us for the relationship between the two speeds.

Let's calculate each velocity and then make the relationship.

Suppose a pendulum length value of L = 1 m, to make an explicit calculation.

       [tex]v_1 = \frac{0.0055 + 10}{0.0055} \ \sqrt{2 \ 9.8 \ 1 (1 - cos 6.8)}[/tex]  

       v₁ = 675.49 m / s

       

       [tex]v_2 = \frac{0.01 + 10}{0.010} \ \sqrt{2 \ 9.8 \ 1(1 - cos 11.4)}[/tex]

       v₂ = 622.46 m/s

The ratio of the speeds is:

       [tex]\frac{v_1}{v_2} = \frac{675.49}{622.46}[/tex]  

       [tex]\frac{v_1}{v_2}[/tex]  = 1,085

In conclusion, using the conservation of momentum and energy, we can find the relationship of the velocities of the balls fired by the two catapults is:

          [tex]\frac{v_1}{v_2}[/tex]  = 1,085

Learn more here:  https://brainly.com/question/15095150

Ver imagen moya1316