Answer:
x = -3, or x = -4 is the solution for the given algebraic expression [tex]x^{2} + 7x + 12 = 0[/tex]
Step-by-step explanation:
Here, the given algebraic equation is:
[tex]x^{2} + 7x + 12 = 0[/tex]
Now, solving this expression by splitting the middle term, we get
[tex]x^{2} + 7x + 12 = 0 \implies x^{2} + 3x + 4x + 12 = 0[/tex]
⇒ x ( x+3) + x (x+3) = 0
⇒(x+3) (x+4) = 0
⇒ either (x+3) = 0, or (x+4) = 0
Hence, either x = - 3, or x = - 4
Hence, x = -3, or x = -4 is the solution for the given algebraic expression [tex]x^{2} + 7x + 12 = 0[/tex]