Answer:
5 times.
Step-by-step explanation:
We are asked to find [tex]5\cdot 10^5[/tex] is how many times as large as [tex]1\cdot 10^5[/tex].
To solve our given problem, we need to divide [tex]5\cdot 10^5[/tex] by [tex]1\cdot 10^5[/tex] as:
[tex]\frac{5\cdot 10^5}{1\cdot 10^5}[/tex]
Using quotient rule of exponents [tex]\frac{a^m}{a^n}=a^{m-n}[/tex], we will get:
[tex]\frac{5\cdot 10^{(5-5)}}{1}[/tex]
[tex]\frac{5\cdot 10^{0}}{1}[/tex]
[tex]\frac{5\cdot 1}{1}[/tex]
[tex]5[/tex]
Therefore, [tex]5\cdot 10^5[/tex] is ''5 times" as large as [tex]1\cdot 10^5[/tex].