Answer:
(a) 0.873 (b) 0.007 (c) 0.715 (d) 0.277 (e) 1.25 and 1.09
Step-by-step explanation:
The probability that the random variable X takes the value x is given by P(X=x) = [tex]25Cx 0.05^x0.95^{25-x}[/tex]. Then,
(a) [tex]P(X\leq) = (25C0)(0.05^0)(0.95^{25}) + (25C1)(0.05^1)(0.95^{24}) + (25C2)(0.05^2)(0.95^{23})= 0.873[/tex]
(b) [tex]P(X\geq5) = 1-P(X\leq4) = 1 - (0.873 + (25C3)(0.05^3)(0.95^{22}) + (25C4)(0.05^4)(0.95^{21})) = 1 - (0.873 + 0.12) = 0.007[/tex]
(c) [tex]P(1\leqX\leq4) = (25C1)(0.05^1)(0.95^{24}) + (25C2)(0.05^2)(0.95^{23}) + (25C3)(0.05^3)(0.95^{22}) + (25C4)(0.05^4)(0.95^{21}) = 0.715[/tex]
(d) [tex]P(X=0) = (25C0)(0.05^0)(0.95^{25}) = 0.277[/tex]
(e) E(X) = np = (25)(0.05) = 1.25 and [tex]Sd(X) = \sqrt{Var(X)} = \sqrt{np(1-p)} = 1.09[/tex]