A 2000 kg car starts from rest and coasts down from te top of 5m long driveway that is sloped at an angle of 20 degrees with the horizontal. If a constant 4000N frictional force resists the car's motion, find the speed of the car at the bottom of the driveway?

Respuesta :

Answer:3.67 m/s

Explanation:

Given

mass of car [tex]m=2000 kg[/tex]

Initial velocity [tex]u=0[/tex]

Length of track [tex]L=5 m[/tex]

inclination of driveway [tex]\theta =20^{\circ}[/tex]

Friction Force [tex]F=4000 N[/tex]

Sin component of weight accelerate the car while friction tries to oppose the car i.e.

[tex]mg\sin \theta -F=ma_{net}[/tex]

[tex]a_{net}=g\sin \theta -\frac{F}{m}[/tex]

[tex]a_{net}=9.8\sin 20-2=1.35 m/s^2[/tex]

Using [tex]v^2-u^2=2 as[/tex]

[tex]v=final\ velocity[/tex]

[tex]v=\sqrt{2\times 1.35\times 5}[/tex]

[tex]v=\sqrt{13.517}=3.67 m/s[/tex]