Answer:3.67 m/s
Explanation:
Given
mass of car [tex]m=2000 kg[/tex]
Initial velocity [tex]u=0[/tex]
Length of track [tex]L=5 m[/tex]
inclination of driveway [tex]\theta =20^{\circ}[/tex]
Friction Force [tex]F=4000 N[/tex]
Sin component of weight accelerate the car while friction tries to oppose the car i.e.
[tex]mg\sin \theta -F=ma_{net}[/tex]
[tex]a_{net}=g\sin \theta -\frac{F}{m}[/tex]
[tex]a_{net}=9.8\sin 20-2=1.35 m/s^2[/tex]
Using [tex]v^2-u^2=2 as[/tex]
[tex]v=final\ velocity[/tex]
[tex]v=\sqrt{2\times 1.35\times 5}[/tex]
[tex]v=\sqrt{13.517}=3.67 m/s[/tex]