Answer:
21.68 minutes ≈ 21.7 minutes
Step-by-step explanation:
Given:
[tex]T=60+40e^{kt}[/tex]
Initial temperature
T = 100°C
Final temperature = 60°C
Temperature after (t = 3 minutes) = 90°C
Now,
using the given equation
[tex]T=60+40e^{kt}[/tex]
at T = 90°C and t = 3 minutes
[tex]90=60+40e^{k(3)}[/tex]
[tex]30=40e^{3k}[/tex]
or
[tex]e^{3k}=\frac{3}{4}[/tex]
taking the natural log both sides, we get
3k = [tex]\ln(\frac{3}{4})[/tex]
or
3k = -0.2876
or
k = -0.09589
Therefore,
substituting k in 1 for time at temperature, T = 65°C
[tex]65=60+40e^{( -0.09589)t}[/tex]
or
[tex]5=40e^{( -0.09589)t}[/tex]
or
[tex]e^{( -0.09589)t}=\frac{5}{40}[/tex]
or
[tex]e^{( -0.09589)t}=0.125[/tex]
taking the natural log both the sides, we get
( -0.09589)t = ln(0.125)
or
( -0.09589)t = -2.0794
or
t = 21.68 minutes ≈ 21.7 minutes