Respuesta :
Answer :
The specific heat of calorimeter is [tex]1.78kJ/^oC[/tex]
The energy of combustion per mole of vanillin is [tex]-4.18\times 10^3kJ/mol[/tex]
Explanation :
Part 1 :
First we have to calculate the energy released for 0.1625 g of benzoic acid.
Energy released = Energy released × Mass of benzoic acid
Energy released = (26.42 kJ/g) × (0.1625g)
Energy released = -4.293 kJ
Now we have to calculate the specific heat of calorimeter.
Heat released by the reaction = Heat absorbed by the calorimeter
[tex]\Delta E_{rxn}=q_{rxn}=-q_{cal}[/tex]
[tex]q_{rxn}=q_{cal}=-c_{cal}\times \Delta T[/tex]
where,
[tex]q_{rxn}[/tex] = heat released by the reaction = -4.293 kJ
[tex]q_{cal}[/tex] = heat absorbed by the calorimeter
[tex]c_{cal}[/tex] = specific heat of calorimeter = ?
[tex]\Delta T[/tex] = change in temperature = [tex]2.41^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]-4.293kJ=-c_{cal}\times 2.41^oC[/tex]
[tex]c_{cal}=1.78kJ/^oC[/tex]
Thus, the specific heat of calorimeter is [tex]1.78kJ/^oC[/tex]
Part 2 :
First we have to calculate the energy released by the reaction.
[tex]q_{rxn}=q_{cal}=-c_{cal}\times \Delta T[/tex]
[tex]q_{cal}=c_{cal}\times \Delta T[/tex]
where,
[tex]q_{rxn}[/tex] = heat released by the reaction = ?
[tex]q_{cal}[/tex] = heat absorbed by the calorimeter
[tex]c_{cal}[/tex] = specific heat of calorimeter = [tex]1.78kJ/^oC[/tex]
[tex]\Delta T[/tex] = change in temperature = [tex]3.19^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]q_{cal}=c_{cal}\times \Delta T[/tex]
[tex]q_{cal}=1.78kJ/^oC\times 3.19^oC[/tex]
[tex]q_{cal}=5.68kJ[/tex]
[tex]\Delta E_{rxn}=q_{rxn}=-q_{cal}[/tex]
[tex]\Delta E_{rxn}=-5.68kJ[/tex]
Now we have to calculate the energy of combustion per mole of vanillin.
[tex]\text{Moles of vanillin}=\frac{\text{Mass of vanillin}}{\text{Molar mass of vanillin}}[/tex]
Molar mass of vanillin = 152.15 g/mole
Mass of vanillin = 0.2070 g
[tex]\text{Moles of vanillin}=\frac{0.2070g}{152.15g/mole}=0.00136mole[/tex]
[tex]\Delta E_{rxn}=\frac{-5.68kJ}{0.00136mole}=-4.18\times 10^3kJ/mol[/tex]
Thus, the energy of combustion per mole of vanillin is [tex]-4.18\times 10^3kJ/mol[/tex]