Answer:
a) 70
b) 10π ft²/ft
c) 0.24 ft/sec
Step-by-step explanation:
1) y = x³ + 2x
[tex]\frac{dy}{dt}=\frac{d(x^3+2x)}{dt}[/tex]
or
[tex]\frac{dy}{dt}[/tex] = [tex]3x^2\frac{dx}{dt}+2\frac{dx}{dt}[/tex]
at [tex]\frac{dx}{dt}=5[/tex] and x = 2
[tex]\frac{dy}{dt}[/tex] = [tex]3(2)^2\times(5)+2\times(5)[/tex]
or
[tex]\frac{dy}{dt}[/tex] = 60 + 10 = 70
2) A = πr² ft²
[tex]\frac{dA}{dr}=\frac{d(\pi r^2)}{dr}[/tex]
or
[tex]\frac{dA}{dr}[/tex]= 2(πr)
at r = 5 ft
[tex]\frac{dA}{dr}[/tex]= 2(π × 5) ft²/ft
or
[tex]\frac{dA}{dr}[/tex]= 10π ft²/ft
3) From Pythagoras theorem
Base² + Perpendicular² = Hypotenuse²
Thus,
B² + P² = H² .............(1)
here, H = length of the ladder
P is the height of the wall
B is the distance from the wall at bottom
or
B² + P² = 25² ...........(1)
at B = 20 ft
20² + P² = 25²
or
P² = 625 - 400
or
P = √225
or
P = 15 ft
differentiating (1) with respect to time, we get
[tex]2B\frac{dB}{dt}+2P\frac{dP}{dt}=0[/tex]
at B = 20 ft, [tex]\frac{dB}{dt} = 0.18[/tex] and P = 15 ft
⇒ 2(20)(0.18) + [tex]2(15)\frac{dP}{dt}[/tex] = 0
or
[tex]30\frac{dP}{dt}[/tex] = - 7.2
or
[tex]\frac{dP}{dt}[/tex] = - 0.24 ft/sec (Here negative sign depicts the ladder slides down)