Answer:
Lower bound: 0.057 < P
Upper bound: P < 0.133
0.057 < P < 0.133
Step-by-step explanation:
The sample proportion of individuals who work at home at least once per week (s) is:
[tex]p= \frac{38}{400} \\p=0.095[/tex]
For a 99% confidence interval, the margin of error is determined as:
[tex]ME = 2.575\sqrt{\frac{p(1-p)}{n}}[/tex]
[tex]ME = 2.575\sqrt{\frac{0.095(1-0.095)}{400}}\\ME = 0.038[/tex]
The lower bound for 99% confidence interval is
[tex]0.095-0.038 < P\\0.057 < P[/tex]
The upper bound for 99% confidence interval is
[tex]P < 0.095+0.038\\P < 0.133[/tex]