Answer:
1.97 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²
[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 21=4.5t+\frac{1}{2}\times -9.8\times t^2\\\Rightarrow 21=-4.5t-4.9t^2\\\Rightarrow 4.9t^2+4.5t-28=0\\\Rightarrow 49t^2+45t-280=0[/tex]
Solving the above equation we get
[tex]t=\frac{-45+\sqrt{45^2-4\cdot \:49\left(-280\right)}}{2\cdot \:49}, \frac{-45-\sqrt{45^2-4\cdot \:49\left(-280\right)}}{2\cdot \:49}\\\Rightarrow t=1.97, -2.89[/tex]
So, the time the package was in the air is 1.97 seconds