Answer:
0.029%
Explanation:
Weight on the surface is given by,
[tex]F_W = mg = (96.1Kg)(9.8m/s^2)=941.78N[/tex]
The acceleration due to gravity at given height is,
[tex]g_h=\frac{gR^2}{R+h^2}[/tex]
The weight in another height is equal to
[tex]F_h=mg_h[/tex]
[tex]F_h= m*\frac{gR^2}{R+h^2}[/tex]
[tex]F_h = \frac{F_WR^2}{(R+h)^2}[/tex]
[tex]F_h=\frac{(941.78)(6.371*10^6)}{(6.371*10^6+1841)}[/tex]
[tex]F_h = 941.50N[/tex]
The change of the Weight is,
[tex]\frac{F-F_h}{F}*100=\frac{941.78-941.50}{941.78}*100=0.029\%[/tex]