Answer:[tex]R=1.424 M\Omega [/tex]
Explanation:
Given
mass of gold [tex]m=1.6 gm[/tex]
Length of wire [tex]L=2.2 km[/tex]
Resistivity of gold [tex]\rho =2.44\times 10^{-8}[/tex]
density of gold [tex]=19.3\times 10^3 kg/m^3[/tex]
and [tex]mass=volume\times density[/tex]
[tex]1.6\times 10^{-3}=volume\times 19.3\times 10^3[/tex]
[tex]volume=8.29\times 10^{-8} m^3[/tex]
And [tex]Resistance R=\frac{\rho L}{A}[/tex]
also be written as
[tex]R=\frac{\rho L^2}{V}[/tex]
where [tex]L=length[/tex]
[tex]V=volume[/tex]
[tex]\rho =resistivity\ of\ gold[/tex]
[tex]R=\frac{2.44\times 10^{-8}\times (2200)^2}{8.29 \times 10^{-8}}[/tex]
[tex]R=1.42\times 10^{6} \Omega [/tex]
[tex]R=1.424 M\Omega [/tex]