An electron is trapped in an infinite square-well potential of width 0.4 nm. If the electron is initially in the n = 4 state, what are the various photon energies that can be emitted as the electron jumps to the ground state? (List in descending order of energy. Enter 0 in any remaining unused boxes.)answers are, but cannot solve to ithighest: 35.3 eV28.2 eV18.8 eV16.5 eV11.8 eVlowest: 7.06 eV

Respuesta :

Answer:

The energies in descending order 35.3 eV, 28.2 eV, 18.8 eV, 16.5 eV, 11.8 eV, 7.05 eV.

Explanation:

Given that,

Width = 0.4 nm

Number of state n= 4

We need to calculate the energy in first state

When n = 1,

Using formula of energy

[tex]E_{1}=\dfrac{h^2}{8mL^2}[/tex]

Put the value into the formula

[tex]E_{1}=\dfrac{(6.63\times10^{-34})^2}{8\times9.1\times10^{-31}\times(0.4\times10^{-9})^2}[/tex]

[tex]E_{1}=3.77\times10^{-19}\ J[/tex]

[tex]E_{1}=\dfrac{3.77\times10^{-19}}{1.6\times10^{-19}}[/tex]

[tex]E_{1}=2.35\ eV[/tex]

Energy in nth level is

[tex]E_{n}=n^2\times E_{1}[/tex]

Photon energy in different states is

[tex]E_{p}=E_{n}-E_{n-1}[/tex]

Put the value into the formula

[tex]E_{4-3}=(4^2-3^2)\times2.35=16.5\ eV[/tex]

[tex]E_{4-2}=(4^2-2^2)\times2.35=28.2\ eV[/tex]

[tex]E_{4-1}=(4^2-1^2)\times2.35=35.3\ eV[/tex]

[tex]E_{3-2}=(3^2-2^2)\times2.35=11.8\ eV[/tex]

[tex]E_{3-1}=(3^2-1^2)\times2.35=18.8\ eV[/tex]

[tex]E_{2-1}=(2^2-1^2)\times2.35=7.05\ eV[/tex]

Hence, The energies in descending order 35.3 eV, 28.2 eV, 18.8 eV, 16.5 eV, 11.8 eV, 7.05 eV.