Respuesta :
Answer:
[tex]\dfrac{r}{s}(6)=\dfrac{3(6)-1}{2(6)+1}[/tex]
Step-by-step explanation:
We know that for any two function f(x) and g(x) ,
[tex]\dfrac{f}{g}(x)=\dfrac{f(x)}{g(x)}[/tex]
Given functions : [tex]r(x)=3x-1[/tex] and [tex]s(x)=2x+1[/tex]
Then, [tex]\dfrac{r}{s}(x)=\dfrac{r(x)}{s(x)}[/tex]
[tex]\Rightarrow\ \dfrac{r}{s}(x)=\dfrac{3x-1}{2x+1}[/tex]
At x= 6 , we get
[tex]\dfrac{r}{s}(6)=\dfrac{3(6)-1}{2(6)+1}[/tex]
The , The expression is equivalent to [tex]\dfrac{r}{s}(6)=\dfrac{3(6)-1}{2(6)+1}[/tex]
When we further simplify it , we get [tex]\dfrac{r}{s}(6)=\dfrac{18-1}{12+1}=\dfrac{17}{13}[/tex]