Respuesta :

Answer:

[tex]\dfrac{r}{s}(6)=\dfrac{3(6)-1}{2(6)+1}[/tex]

Step-by-step explanation:

We know that for any two function f(x) and g(x) ,

[tex]\dfrac{f}{g}(x)=\dfrac{f(x)}{g(x)}[/tex]

Given functions : [tex]r(x)=3x-1[/tex]  and [tex]s(x)=2x+1[/tex]

Then, [tex]\dfrac{r}{s}(x)=\dfrac{r(x)}{s(x)}[/tex]

[tex]\Rightarrow\ \dfrac{r}{s}(x)=\dfrac{3x-1}{2x+1}[/tex]

At x= 6 , we get

[tex]\dfrac{r}{s}(6)=\dfrac{3(6)-1}{2(6)+1}[/tex]

The , The expression is equivalent to [tex]\dfrac{r}{s}(6)=\dfrac{3(6)-1}{2(6)+1}[/tex]

When we further simplify it , we get [tex]\dfrac{r}{s}(6)=\dfrac{18-1}{12+1}=\dfrac{17}{13}[/tex]

Answer:

A on Edge 2021

Step-by-step explanation: