At a certain temperature, the equilibrium constant, Kc,Kc, for this reaction is 53.3. H2(g)+I2(g)↽−−⇀2HI(g)Kc=53.3 H2(g)+I2(g)↽−−⇀2HI(g)Kc=53.3 At this temperature, 0.400 mol H20.400 mol H2 and 0.400 mol I20.400 mol I2 were placed in a 1.00 L container to react. What concentration of HIHI is present at equilibrium?

Respuesta :

znk

Answer:

0.628 mol·L⁻¹

Explanation:

The balanced equation is

H₂ + I₂ ⇌ 2I ₂

Data:

 Kc = 53.3

[H₂] = 0.400 mol·L⁻¹

[I₂] = 0.400 mol·L⁻¹

1. Set up an ICE table.

[tex]\begin{array}{ccccccc}\rm \text{H}_{2}& + & \text{I}_{2} & \, \rightleftharpoons \, & \text{2HI} & & \\0.400 & & 0.400 & & 0 & & \\-x &   & -x  &   & +2x &   & \\0.400 - x &   & 0.400 - x &   & 2x & & \\\end{array}[/tex]

2. Calculate the equilibrium concentrations

[tex]K_{\text{c}} = \dfrac{\text{[HI]$^{2}$}}{\text{[H$_{2}$][I$_2$]}} = \dfrac{(2x)^{2}}{(0.400 - x)^{2}} = 53.3\\\\\begin{array}{rcl}\dfrac{(2x)^{2}}{(0.400 - x)^{2}} &=& 53.3\\ \dfrac{2x }{0.400 - x} & = & 7.301\\\\2x & = & 7.301(0.400 - x)\\2x & = & 2.920 - 7.301x\\9.301x & = & 2.920\\x & = & \dfrac{2.920}{9.301}\\\\x & = & \mathbf{0.3140}\\\end{array}[/tex]

[HI] = 2x mol·L⁻¹ = 2 × 0.3140 mol·L⁻¹ = 0.628 mol·L⁻¹

The equilibrium constant for the reaction H₂(g) + I₂(g) ⇄ 2HI(g) is 53.3, so when 0.400 moles of H₂ and I₂ are placed in a container of 1.00 L, the concentration of HI present at equilibrium is 0.62 mol/L.

The balanced reaction is:

H₂(g) + I₂(g) ⇄ 2HI(g)   (1)

The equilibrium constant for the above reaction is:

[tex] K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} = 53.3 [/tex]   (2)

Before the reaction, the concentration of H₂ and I₂ is:

[tex] [H_{2}] = [I_{2}] = \frac{0.400 mol}{1 L} = 0.400 mol/L [/tex]

At equilibrium we have:

H₂(g)   +   I₂(g)   ⇄   2HI(g)   (3)

0.4-x    0.4-x            2x

Entering the values of equation (3) into equation (2), we have:

[tex] 53.3 = \frac{(2x)^{2}}{(0.400 - x)(0.400 - x)} [/tex]

[tex] 53.3(0.400 - x)^{2} - 4x^{2} = 0 [/tex]

After solving the above equation for x, we get:

[tex] x_{1} = 0.31 mol/L [/tex]

[tex] x_{2} = 0.55 mol/L [/tex]  

Since the concentrations of H₂ and I₂ could not be negative, we will take the x₁ value (with the x₂ value, we have [H₂] = [I₂] = 0.400 - 0.55 = -0.15).  

Hence, the concentration of HI is:

[tex][HI] = 2x = 2*0.31 mol/L = 0.62 mol/L[/tex]                      

Therefore, the concentration of HI present at equilibrium is 0.62 mol/L.

Learn more about equilibrium constants here:

  • https://brainly.com/question/7145687?referrer=searchResults
  • https://brainly.com/question/9173805?referrer=searchResults

I hope it helps you!  

Ver imagen whitneytr12