Respuesta :

For this case we must find the inverse of the following function:

[tex]f (x) = \frac {1} {9} x-2[/tex]

To do this, we follow the steps below:

We change[tex]f (x)[/tex]by y:

[tex]y = \frac {1} {9} x-2[/tex]

We exchange the variables:

[tex]x = \frac {1} {9} y-2[/tex]

We clear the variable "y":

[tex]x + 2 = \frac {1}{9} y\\9 (x + 2) =y\\y = 9 (x + 2)\\y = 9x + 18[/tex]

Finally, we change "y" to[tex]f^{-1}(x):[/tex]

[tex]f^{-1}(x) = 9x + 18[/tex]

ANswer:

The inverse of the given function is:[tex]f^{-1}(x) = 9x + 18[/tex]

Answer:

a)

on edg 2020

Step-by-step explanation:

edgen