Answer:
[tex]N=(180)\times e^{\frac{y}{12.3}}[/tex] mg
Explanation:
For radioactive decay of an radioactive isotope-
[tex]N=N_{0}e^{(\frac{t}{t_{\frac{1}{2}}})}[/tex]
Where N is amount of radioactive isotope after "t" time, [tex]N_{0}[/tex] is initial amount of radioactive isotope and [tex]t_{\frac{1}{2}}[/tex] is half-life of radioactive isotope
Here, [tex]N_{0}[/tex] = 180 mg, [tex]t_{\frac{1}{2}}[/tex] = 12.3 years, t = y years
So, [tex]N=(180)\times e^{\frac{y}{12.3}}[/tex] mg
The above expression gives the remaining quantity of tritium after y years