The cabinet that will enclose the Acrosonic model D loudspeaker system will be rectangular and will have an internal volume of 2.4 ft3. For aesthetic reasons, the design team has decided that the height of the cabinet is to be 1.5 times its width. If the top, bottom, and sides of the cabinet are constructed of veneer costing 90¢/ft2 and the front (ignore the cutouts in the baffle) and rear are constructed of particle board costing 30¢/ft2, what are the dimensions of the enclosure that can be constructed at a minimum cost?

Respuesta :

Answer:

Dimensions of cabinet

x (wide) = 1.93 ft

y (hight) = 2.895 ft

p (depth) =0.43 ft

Step-by-step explanation:

Dimensions of cabinet

y  height

x  wide

p  deph

From problem statement

y = 1.5 x       V = y * x * p      V = 1.5*x²p      but p = V/y*x     p = 2.4/1.5 x²

p = 1.6 / x²

Then

Area of top and bottom    A₁ = 2*x*p  ⇒   2*x*1.6/x²  

A₁  = 3.2 /x

And cost  in $ C₁  = 0,9 * 3.2 /x     ⇒   C₁  = 2.88/x

Area of sides (front and rear not included)

A₂ = 2*y *p      A₂ = 3*x*1.6/x²    A₂ = 4.8/x

And cost in $ C₂ = 0.9 * 4.8 /x    C₂ = 4.32 /x

Area of  front and rear   A₃  =2* y*x    A₃  = 2*1.5 *x²    A₃ = 3x²

And cost  C₃ = 0.3 * 3/x²    =  0.9/x²

Total cost  C(x) = C₁  + C₂ + C₃            C(x) = 2.88/x  +  4.32/x + 0.9x²

Taking derivatives

C´(x)  =  -2.88/x² - 4.32 /x² + 0.9 x

C´(x) = 0             -2.88/x² - 4.32/x² + 0.9 x = 0     -2.88 - 4.32 + 0.9 x³ = 0

-7.2 + x³ = 0    x³ = 7.2    

x = 1.93 ft        y = 1.5*1.93  = 2.895 ft    and p = 0.43 ft

               

Lanuel

To minimize the construction cost, the dimensions of the cabinet should be 1.0 x [tex]\sqrt[3]{4}[/tex] x [tex]\frac{3}{2}\sqrt[3]{4}[/tex] feet.

Given the following data:

  • Capacity = 2.4 [tex]ft^3[/tex].
  • Cost of material (top, bottom and sides) =  90 ¢[tex]/ft^2[/tex]
  • Cost of material (front and rear) =  30 ¢[tex]/ft^2[/tex]
  • h = 1.5w

How to calculate the dimensions of the cup.

Let the height be h.

Let the width be w.

Let the length be L.

Therefore, the capacity (volume) of the cabinet is given by:

[tex]V = L\times w\times h\\\\2.4=Lw(1.5w)\\\\2.4=1.5Lw^2\\\\1.6=Lw^2\\\\L=\frac{1.6}{w^2}[/tex]

For the area of top and bottom:

[tex]A=2(Lw)=2Lw\\\\A=2 \times \frac{1.6}{w^2} \times w\\\\A=\frac{3.2}{w}[/tex]

For the cost of top and bottom:

[tex]C_1=90 \times \frac{3.2}{w} \\\\C_1=\frac{288}{w}[/tex]

For the area sides:

[tex]A=3(Lw)=3Lw\\\\A=3 \times \frac{1.6}{w^2} \times w\\\\A=\frac{4.8}{w}[/tex]

For the cost of sides:

[tex]C_2=90 \times \frac{4.8}{w} \\\\C_2=\frac{432}{w}[/tex]

For the area of front and rear:

[tex]A=2(hw)=2hw\\\\A=2 \times 1.5w \times w\\\\A=3.2w^2[/tex]

For the cost of front and rear:

[tex]C_3=30 \times 3w^2 \\\\C_3=90w^2[/tex]

At the minimum cost, we have:

[tex]C(w)=C_1+C_2+C_3\\\\C(w)=\frac{288}{w} +\frac{432}{w} +90w^2[/tex]

Differentiating wrt w, we have:

[tex]C(w)'=-\frac{288}{w^2} -\frac{432}{w^2} +180w=0\\\\-\frac{288}{w^2} -\frac{432}{w^2} +180w=0\\\\180w=\frac{288}{w^2}+\frac{432}{w^2}\\\\180w^3=288+432\\\\180w^3=720\\\\w^3=4\\\\w=\sqrt[3]{4} \;ft[/tex]

For the height:

[tex]h=1.5w=\frac{3}{2} w\\\\h=\frac{3}{2}\sqrt[3]{4} \;ft[/tex]

For the length:

[tex]L=\frac{1.6}{w^2} =\frac{\frac{8}{5} }{w^2} \\\\L=\frac{8}{5w^2} \\\\L=\frac{8}{5(\sqrt[3]{4} )^2}[/tex]

L = 1.0 ft.

Read more on capacity here: brainly.com/question/25248189