A mass weighing 16 lb stretches a spring 3 in. The mass is attached to a viscous damper with a damping constant of 2 lb-s/ft. If the mass is set in motion from its equilibrium position with a downward velocity of 2 in/s, find its position u at any time t. Assume the acceleration of gravity g=32 ft/s2.

Respuesta :

Answer:

[tex]u(t)=\frac{1}{12\sqrt{31}}e^{-2t}sin(2\sqrt{31}t)[/tex]

Explanation:

Our values given are,

[tex]L=3in=0.25ft[/tex]

Ramping constant

[tex]r=2lb.sec/ft[/tex]

By this way we can calculate k and m.

[tex]m=\frac{mg}{g} = \frac{16}{32}=\frac{1}{2} lb/ft/sec^2[/tex]

[tex]k=\frac{mg}{L} = \frac{16}{1/4} = 64lb/ft[/tex]

We can now create the differential equation, which is given by,

[tex]mu''+ru'+ku=0[/tex]

[tex]\Rightarrow \frac{1}{2}u''+2u'+54u=0[/tex]

The initial conditions are:

[tex]u(0) = 0[/tex]

[tex]u'(0) = \frac{1}{6}[/tex]

*Note that the velocity war given in inches and transformated to feet.

With that we can create our characteristic equation:

[tex]\frac{1}{2}r^2+2r+64=0[/tex]

With two roots

[tex]r_1 = -2+2\sqrt{31}i[/tex]

[tex]r_2 = -2-2\sqrt{31}i[/tex]

Our general solution of the Differential equation is then,

[tex]u(t) = e^{2t}[c_1 cos(2\sqrt{31}t)+c_2 sin(2\sqrt{31}t)][/tex]

Applying the initial conditions,

[tex]u(t)=0\Rightarrow 0=c_1[/tex]

[tex]u'(t)=\frac{1}{6} \Rightarrow \frac{1}{6} = e^{0}(2\sqrt{31}c_2)[/tex]

The position of u at any time t is,

[tex]u(t)=\frac{1}{12\sqrt{31}}e^{-2t}sin(2\sqrt{31}t)[/tex]