Answer:
The equation of line with given points is Y = - [tex]\frac{3}{8}[/tex] X + 1
Step-by-step explanation:
Given as :
The points are ( 16 , - 5 ) And ( -40 , 16 )
The line equation in points form :
Y - y1 = m ( X - x1)
Where m is the slope of line
Now , m = [tex]\frac{y2 - y1}{x2 - x1}[/tex]
Or, m = [tex]\frac{16 +5}{-40 - 16}[/tex]
Or, m = [tex]\frac{21}{- 56}[/tex]
SO, Y + 5 = m ( X - 16)
Put the value of slope
∴ Y + 5 = [tex]\frac{21}{-56}[/tex] ( X - 16)
Or, ( - 56) × ( Y + 5 ) = 21 X - ( 21 × 16 )
Or, - 56 Y - 280 = 21 X - 336
Or, - 280 + 336 = 21 X + 56 Y
Or, 56 = 21 X + 56 Y
∴ Y = - [tex]\frac{21}{56}[/tex] X + 1
Or, Y = - [tex]\frac{3}{8}[/tex] X + 1
Hence The equation of line with given points is Y = - [tex]\frac{3}{8}[/tex] X + 1 Answer