Respuesta :

Answer:

The equation of line with given points is  Y  = - [tex]\frac{3}{8}[/tex] X + 1

Step-by-step explanation:

Given as :

The points are ( 16 , - 5 )    And ( -40 , 16 )

The line equation in points form :

Y - y1  = m ( X - x1)

Where m is the slope of line

Now , m = [tex]\frac{y2 - y1}{x2 - x1}[/tex]

Or,     m = [tex]\frac{16 +5}{-40 - 16}[/tex]

Or,     m =   [tex]\frac{21}{- 56}[/tex]

SO, Y + 5  = m ( X - 16)

Put the value of slope

∴    Y + 5 = [tex]\frac{21}{-56}[/tex] ( X - 16)

Or, ( - 56) × ( Y + 5 ) = 21 X - ( 21 × 16 )

Or,  - 56 Y - 280 = 21 X - 336

Or,   - 280 + 336 = 21 X + 56 Y

Or,    56  = 21 X + 56 Y

∴       Y  = - [tex]\frac{21}{56}[/tex] X + 1

Or,      Y  = - [tex]\frac{3}{8}[/tex] X + 1

Hence The equation of line with given points is  Y  = - [tex]\frac{3}{8}[/tex] X + 1  Answer